

EDITION v5.0.1

Refer changelog for the book updates and community contributions.

PUBLISHED BY Microsoft Press and Microsoft DevDiv Divisions of Microsoft Corporation One

Microsoft Way Redmond, Washington 98052-6399

Copyright © 2021 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced in any form or by any

means without the written permission of the publisher.

This book is available for free in the form of an electronic book (e-book) available through multiple

channels at Microsoft such as https://dot.net/architecture.

If you have questions related to this book, email at dotnet-architecture-ebooks-

feedback@service.microsoft.com.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions, and

information expressed in this book, including URL and other Internet website references, may change

without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are

trademarks of the Microsoft group of companies. All other marks are property of their respective

owners.

Author:

> Cesar de la Torre, Sr. PM, .NET Product Team, Microsoft Corp.

Participants and reviewers:

> Scott Hunter, Partner Director PM, .NET team, Microsoft

> Paul Yuknewicz, Principal PM Manager, Visual Studio Tools team, Microsoft

> Lisa Guthrie, Sr. PM, Visual Studio Tools team, Microsoft

> Ankit Asthana, Principal PM Manager, .NET team, Microsoft

> Unai Zorrilla, Developer Lead, Plain Concepts

> Javier Valero, Chief Operating Officer at Grupo Solutio

Introduction

When you decide to modernize your web applications or services and move them to the cloud, you

don’t necessarily have to fully rearchitect your apps. Rearchitecting an application by using an

advanced approach like microservices isn’t always an option because of cost and time restraints.

Depending on the type of application, rearchitecting an app also might not be necessary. To optimize

the cost-effectiveness of your organization’s cloud migration strategy, it’s important to consider the

needs of your business and the requirements of your apps. You’ll need to determine:

https://aka.ms/modernize-ebook-changelog
https://dot.net/architecture
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback%20for%20.NET%20Container%20&%20Microservices%20Architecture%20book
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback%20for%20.NET%20Container%20&%20Microservices%20Architecture%20book
https://www.microsoft.com/

• Which apps require a transformation or rearchitecting.

• Which apps need to be only partially modernized.

• Which apps you can “lift and shift” directly to the cloud.

About this guide

This guide focuses primarily on the initial modernization of existing Microsoft .NET Framework web or

service-oriented applications, meaning the action of moving a workload to a newer or more modern

environment without significantly altering the application’s code and basic architecture.

This guide also highlights the benefits of moving your apps to the cloud and partially modernizing

apps by using a specific set of new technologies and approaches, like Windows Containers and

related compute-platforms in Azure supporting Windows Containers.

Path to the cloud for existing .NET applications

Organizations typically choose to move to the cloud for the agility and speed they can get for their

applications. You can set up thousands of servers (VMs) in the cloud in minutes, compared to the

weeks it typically takes to set up on-premises servers.

There isn’t a single, one-size-fits-all strategy for migrating applications to the cloud. The right

migration strategy for you will depend on your organization’s needs and priorities, and the kind of

applications you are migrating. Not all applications warrant the investment of moving to a platform as

a service (PaaS) model or developing a cloud-native application model. In many cases, you can take a

phased or incremental approach to invest in moving your assets to the cloud, based on your business

needs.

For modern applications with the best long-term agility and value for the organization, you might

benefit from investing in cloud-native application architectures. However, for applications that are

existing or legacy assets, the key is to spend minimal time and money (no rearchitecting or code

changes) while moving them to the cloud, to realize significant benefits.

Figure 1-1 shows the possible paths you can take when you move existing .NET applications to the

cloud in incremental phases.

https://azure.microsoft.com/overview/what-is-paas/
https://www.gartner.com/doc/3181919/architect-design-cloudnative-applications

Figure 1-1. Modernization paths for existing .NET applications and services

Each migration approach has different benefits and reasons for using it. You can choose a single

approach when you migrate apps to the cloud, or choose certain components from multiple

approaches. Individual applications aren’t limited to a single approach or maturity state. For instance,

a common hybrid approach would have certain on-premises components plus other components in

the cloud.

The definition and short explanation for each application maturity level are the following:

Level 1: Cloud Infrastructure-Ready applications: In this migration approach, you just migrate or

rehost your current on-premises applications to an infrastructure as a service (IaaS) platform. Your

apps have almost the same composition as before, but now you deploy them to VMs in the cloud.

This simple type of migration is typically known in the industry as “Lift & Shift.”

Level 2: Cloud Optimized applications: At this level and still without rearchitecting or altering

significant code, you can gain additional benefits from running your app in the cloud with modern

technologies like containers and additional cloud-managed services. You improve the agility of your

applications to ship faster by refining your enterprise development operations (DevOps) processes.

You achieve this functionality by using technologies like Windows Containers, which is based on

Docker Engine. Containers remove the friction that’s caused by application dependencies when you

deploy in multiple stages. In this maturity model, you can deploy containers on IaaS or PaaS while

using additional cloud-managed services related to databases, cache as a service, monitoring, and

continuous integration/continuous deployment (CI/CD) pipelines.

The third level of maturity is the ultimate goal in the cloud, but it’s optional for many apps and not the

main focus of this guide:

https://azure.microsoft.com/overview/what-is-iaas/

Level 3: Cloud-Native applications: This migration approach typically is driven by business need and

targets modernizing your mission-critical applications. At this level, you use PaaS services to move

your apps to PaaS computing platforms. You implement cloud-native applications and microservices

architecture to evolve applications with long-term agility, and to scale to new limits. This type of

modernization usually requires architecting specifically for the cloud. New code often must be written,

especially when you move to cloud-native application and microservice-based models. This approach

can help you gain benefits that are difficult to achieve in your monolithic and on-premises application

environment.

Table 1-1 describes the main benefits of and reasons for choosing each migration or modernization

approach.

Cloud Infrastructure-

Ready

Lift and shift

Cloud-Optimized

Modernize

Cloud-Native

Modernize, rearchitect, and rewrite

Application's compute target

Applications deployed to

VMs in Azure

Monolithic or N-Tier apps deployed

to Azure App Service, Azure

Container Instance (ACI), VMs with

containers, or AKS (Azure Kubernetes

Service)

Containerized microservices on Azure

Kubernetes Service (AKS) and/or serverless

microservices based on Azure Functions.

Data target

SQL or any relational

database on a VM

Azure SQL Database Managed

Instance or another managed

database in the cloud.

Fined-grain databases per microservice, based

on Azure SQL Database, Azure Cosmos DB, or

another managed database in the cloud

Advantages

• No rearchitecting, no

new code

• Least effort for quick

migration

• Least-common

denominator supported in

Azure

• Basic availability

guarantees

• After moving to the

cloud, it's easier to

modernize even more

• No rearchitecting

• Minimal code/config changes

• Improved deployment and

DevOps agility to release because of

containers

• Increased density and lower

deployment costs

• Portability of apps and

dependencies

• Flexibility of host targets: PaaS

approaches or IaaS

• Architect for the cloud, you get the best

benefits from the cloud but new code is needed

• Microservices cloud-native approaches

• Modern mission-critical applications, cloud-

resilient hyper-scalable

• Fully managed services

• Optimized for scale

• Optimized for autonomous agility by

subsystem

• Built on deployment and DevOps

Challenges

• Smaller cloud value,

other than the shift in

operating expense or

closing datacenters

• Containerizing is an additional

step in the learning curve for

developers and IT Operations

• DevOps and CI/CD pipelines are

• Requires rearchitecture for cloud-native apps

and microservice architectures and usually

requires significant code refactoring or rewriting
when modernizing (increased time and Budget)

https://www.gartner.com/doc/3181919/architect-design-cloudnative-applications

Cloud Infrastructure-

Ready

Lift and shift

Cloud-Optimized

Modernize

Cloud-Native

Modernize, rearchitect, and rewrite

• Little is managed: No OS

or middleware patching;

might use infrastructure

solutions, like Terraform,

Spinnaker, or Puppet

usually 'a must' for this approach. If

not currently present in the culture

of the organization, it might be an

additional challenge

 Table 1-1. Benefits and challenges of modernization paths for existing .NET applications and services

Key technologies and architectures by maturity level

.NET Framework applications initially started with the .NET Framework version 1.0, which was released

in late 2001. Then, companies moved towards newer versions (such as 2.0, 3.5 and .NET Framework

4.x). Most of those applications ran on Windows Server and Internet Information Server (IIS), and used

a relational database, like SQL Server, Oracle, MySQL, or any other RDBMS.

Most existing .NET applications might nowadays be based on .NET Framework 4.x, or even on .NET

Framework 3.5, and use web frameworks like ASP.NET MVC, ASP.NET Web Forms, ASP.NET Web API,

Windows Communication Foundation (WCF), ASP.NET SignalR, and ASP.NET Web Pages. These

established .NET Framework technologies depend on Windows. That dependency is important to

consider if you are simply migrating legacy apps and you want to make minimal changes to your

application infrastructure.

Figure 1-2 shows the primary technologies and architecture styles used at each of the three cloud

maturity levels:

Figure 1-2. Primary technologies for each maturity level for modernizing existing .NET web applications

Figure 1-2 highlights the most common scenarios, but many hybrid and mixed variations are possible

when it comes to architecture. For example, the maturity models apply not only to monolithic

architectures in existing web apps, but also to service orientation, N-Tier, and other architecture style

variations. The higher focus or percentage on one or another architecture type and related

technologies determines the overall maturity level of your applications.

Each maturity level in the modernization process is associated with the following key technologies and

approaches:

• Cloud Infrastructure-Ready (rehost or basic lift & shift): As a first step, many organizations

want only to quickly execute a cloud-migration strategy. In this case, applications are rehosted.

Most rehosting can be automated by using Azure Migrate, a service that provides the guidance,

insights, and mechanisms needed to assist you in migrating to Azure based on cloud tools like

Azure Site Recovery and Azure Database Migration Service. You can also set up rehosting

manually, so that you can learn infrastructure details about your assets when you move legacy

apps to the cloud. For example, you can move your applications to VMs in Azure with little

modification-probably with only minor configuration changes. The networking in this case is

similar to an on-premises environment, especially if you create virtual networks in Azure.

• Cloud-Optimized (Managed Services and Windows Containers): This model is about making a

few important deployment optimizations to gain some significant benefits from the cloud,

without changing the core architecture of the application. The fundamental step here is to add

Windows Containers support to your existing .NET Framework applications. This important step

(containerization) doesn’t require touching the code, so the overall lift and shift effort is light.

You can use tools like Image2Docker or Visual Studio, with its tools for Docker. Visual Studio

automatically chooses smart defaults for ASP.NET applications and Windows Containers images.

These tools offer both a rapid inner loop, and a fast path to get the containers to Azure. Your

https://aka.ms/azuremigrate
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/campaigns/database-migration/
https://docs.microsoft.com/virtualization/windowscontainers/about/
https://github.com/docker/communitytools-image2docker-win
https://www.docker.com/

agility is improved when you deploy to multiple environments. Then, moving to production, you

can deploy your Windows Containers to Azure Web App for Containers, Azure Container

Instances (ACI), and Azure VMs with Windows Server 2016 and containers if you prefer an IaaS

approach. For more complex multi-container applications, consider using orchestrators like

Azure Kubernetes Service (AKS/ACS).

During this initial modernization, you can also add assets from the cloud, such as monitoring with

tools like Azure Application Insights; CI/CD pipelines for your app lifecycles with Azure DevOps

Services; and many more data resource services that are available in Azure. For instance, you can

modify a monolithic web app that was originally developed by using traditional ASP.NET Web Forms

or ASP.NET MVC, but now you deploy it by using Windows Containers. When you use Windows

Containers, you should also migrate your data to a database in Azure SQL Database Managed

Instance, all without changing the core architecture of your application.

• Cloud-Native: As introduced, you should think about architecting cloud-native applications

when you are targeting large and complex applications with multiple independent development

teams working on different microservices that can be developed and deployed autonomously.

Also, due to granularized and independent scalability per microservice. These architectural

approaches face very important challenges and complexities but can be greatly simplified by

using cloud PaaS and orchestrators like Azure Kubernetes Service (AKS/ACS) (managed

Kubernetes), and Azure Functions for a serverless approach. All these approaches (like

microservices and Serverless) typically require you to architect for the cloud and write new

code—code that is adapted to specific PaaS platforms, or code that aligns with specific

architectures, like microservices.

Figure 1-3 shows the internal technologies that you can use for each maturity level:

Figure 1-3. Internal technologies for each modernization maturity level

https://azure.microsoft.com/services/app-service/containers/
https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/services/container-service/
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://www.asp.net/web-forms
https://www.asp.net/mvc
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/sql-database/
https://www.gartner.com/doc/3181919/architect-design-cloudnative-applications
https://azure.microsoft.com/services/container-service/
https://azure.microsoft.com/services/functions/

Lift and shift scenario

For lift and shift migrations, keep in mind that you can use many different variations of lift and shift in

your application scenarios. If you only rehost your application, you might have a scenario like the one

shown in Figure 1-4, where you use VMs in the cloud only for your application and for your database

server.

Figure 1-4. Example of a pure IaaS scenario in the cloud

Modernization scenarios

For modernization scenarios, you might have a pure Cloud-Optimized application that uses elements

only from that maturity level. Or, you might have an intermediate-state application with some

elements from Cloud Infrastructure-Ready and other elements from Cloud-Optimized (a “pick and

choose” or mixed model), like in Figure 1-5.

Figure 1-5. Example “pick and choose” scenario, with database on IaaS, DevOps, and containerization assets

Next, as the ideal scenario for many existing .NET Framework applications to migrate, you could

migrate to a Cloud-Optimized application, to get significant benefits from little work. This approach

also sets you up for Cloud-Native as a possible future evolution. Figure 1-6 shows an example.

Figure 1-6. Example Cloud-Optimized apps scenario, with Windows Containers and managed services

Going even further, you could extend your existing Cloud-Optimized application by adding a few

microservices for specific scenarios. This approach would move you partially to the level of Cloud-

Native model, which is not the main focus of the present guidance.

What this guide does not cover

This guide covers a specific subset of the example scenarios, as shown in Figure 1-7. This guide

focuses only on the lift and shift scenarios, and ultimately, on the Cloud-Optimized model. In the

Cloud-Optimized model, a .NET Framework application is modernized by using Windows Containers,

plus additional components like monitoring and CI/CD pipelines. Each component is fundamental to

deploying applications to the cloud, faster, and with agility.

Figure 1-7. Cloud-Native is not covered in this guide

The focus of this guide is specific. It shows you the path you can take to achieve a lift and shift of your

existing .NET applications, without rearchitecting, and with no code changes. Ultimately, it shows you

how to make your application Cloud-Optimized.

This guide doesn’t show you how to create Cloud-Native applications, such as how to evolve to a

microservices architecture. To rearchitect your applications or to create brand-new applications that

are based on microservices, see the e-book .NET Microservices: Architecture for containerized .NET

applications.

Additional resources

• Containerized Docker application lifecycle with Microsoft platform and tools

(downloadable e-book)

https://aka.ms/dockerlifecycleebook

• .NET Microservices: Architecture for containerized .NET applications (downloadable e-book)

https://aka.ms/microservicesebook

• Architecting modern web applications with ASP.NET Core and Azure (downloadable e-

book)

https://aka.ms/webappebook

Who should use this guide

This guide was written for developers and solution architects who want to modernize existing

ASP.NET web applications or WCF services that are based on the .NET Framework, for improved agility

in shipping and releasing applications.

https://aka.ms/microservicesebook
https://aka.ms/microservicesebook
https://aka.ms/dockerlifecycleebook
https://aka.ms/microservicesebook
https://aka.ms/webappebook

You also might find this guide useful if you are a technical decision maker, such as an enterprise

architect or a development lead/director who just wants an overview of the benefits that you can get

by using Windows Containers, and by deploying to the cloud when using Microsoft Azure.

How to use this guide

This guide addresses the “why”-why you might want to modernize your existing applications, and the

specific benefits you get from using Windows Containers when you move your apps to the cloud. The

content in the first few chapters of the guide is designed for architects and technical decision makers

who want an overview, but who don’t need to focus on implementation and technical, step-by-step

details.

The last chapter of this guide introduces multiple walkthroughs that focus on specific deployment

scenarios. This guide offers shorter versions of the walkthroughs, to summarize the scenarios and

highlight their benefits. The full walkthroughs drill down into setup and implementation details, and

are published as a set of wiki posts in the same public GitHub repo where related sample apps reside

(discussed in the next section). The last chapter and the step-by-step wiki walkthroughs on GitHub will

be of more interest to developers and architects who want to focus on implementation details.

Sample apps for modernizing legacy apps:

eShopModernizing

The eShopModernizing repo on GitHub offers two sample applications that simulate legacy

monolithic web applications. One web app is developed by using ASP.NET MVC; the second web app

is developed by using ASP.NET Web Forms and the third app is an N-Tier app with a WinForms client

desktop app consuming a WCF service backend. All these apps are based on the traditional .NET

Framework. These sample apps don’t use .NET Core or .NET 5.0 or ASP.NET Core as they are supposed

to be existing/legacy .NET Framework applications to be modernized.

These sample apps have a second version, with modernized code, and which are fairly straightforward.

The most important difference between the app versions is that the second versions use Windows

Containers as the deployment choice. There also are a few additions to the second versions, like Azure

Storage Blobs for managing images, Azure Active Directory for managing security, and Azure

Application Insights for monitoring and auditing the applications.

Send your feedback

This guide was written to help you understand your options for improving and modernizing existing

.NET web applications. The guide and related sample applications are evolving. Your feedback is

welcome! If you have comments about how this guide might be more helpful, please send them to

dotnet-architecture-ebooks-feedback@service.microsoft.com.

https://github.com/dotnet-architecture/eShopModernizing/wiki
https://github.com/dotnet-architecture/eShopModernizing
https://github.com/dotnet-architecture/eShopModernizing
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback%20for%20.NET%20Container%20&%20Microservices%20Architecture%20book

i Contents

Contents
Lift and shift existing .NET apps to Azure IaaS (Cloud Infrastructure-Ready) 1

Why migrate existing .NET web applications to Azure IaaS ... 2

When to migrate to IaaS instead of to PaaS ... 2

Use Azure Migrate to analyze and migrate your existing applications to Azure ... 2

Use Azure Site Recovery to migrate your existing VMs to Azure VMs .. 3

Additional resources .. 4

Migrate your relational databases to Azure ... 6

When to migrate to Azure SQL Database Managed Instance ... 7

When to migrate to Azure SQL Database .. 8

When to move your original RDBMS to a VM (IaaS) ... 8

When to migrate to SQL Server as a VM (IaaS) ... 9

Use Azure Database Migration Service to migrate your relational databases to Azure 9

Additional resources .. 10

Modernize existing .NET apps to Cloud-Optimized applications 11

Reasons to modernize existing .NET apps to Cloud-Optimized applications .. 12

Cloud-Optimized application principles and tenets .. 12

Benefits of a Cloud-Optimized application ... 14

Microsoft technologies in cloud-optimized applications ... 14

Monolithic applications can be Cloud-Optimized .. 15

What about Cloud-Native applications? ... 16

Cloud-native applications details .. 17

What about microservices? .. 18

Deploy existing .NET apps as Windows containers ... 19

What are containers? (Linux or Windows).. 19

Benefits of containers (Docker Engine on Linux or Windows) ... 19

What is Docker? .. 20

Benefits of Windows Containers for your existing .NET applications ... 21

Choose an OS to target with .NET-based containers .. 22

ii Contents

Windows container types ... 23

The container ecosystem in Azure .. 24

When not to deploy to Windows Containers .. 26

When to deploy Windows Containers in your on-premises IaaS VM infrastructure 26

When to deploy Windows Containers to Azure VMs (IaaS cloud) .. 27

When to deploy Windows Containers to Azure Container Instances (ACI) ... 27

When to deploy Windows Containers to Azure Container Service (that is, Kubernetes) 28

Choosing Azure compute platforms for container-based applications .. 29

Build resilient services ready for the cloud: Embrace transient failures in the cloud................................. 29

Handling partial failure .. 30

Modernize your apps with monitoring and telemetry ... 31

Monitor your application with Application Insights ... 31

Monitor your Docker infrastructure with Log Analytics and its Container Monitoring solution...... 32

Modernize your app’s lifecycle with CI/CD pipelines and DevOps tools in the cloud 34

Migrate to hybrid cloud scenarios ... 35

Azure Stack ... 36

Walkthroughs and technical get started overview .. 38

Technical walkthrough list ... 38

Walkthrough 1: Tour of eShop legacy apps ... 39

Technical walkthrough availability .. 39

Overview .. 39

Goals .. 39

Scenario 1: ASP.NET Web apps .. 39

Scenario 2: WCF service and WinForms client app (3-Tier app) .. 40

Benefits ... 41

Next steps ... 41

Walkthrough 2: Containerize your existing .NET applications with Windows Containers 41

Overview .. 41

Goals .. 41

Scenario 1: Containerized ASP.NET web apps .. 42

Scenario 2: Containerized WCF service ... 42

Benefits ... 43

iii Contents

Next steps ... 43

Walkthrough 3: Deploy your Windows Containers-based app to Azure VMs ... 44

Technical walkthrough availability .. 44

Overview .. 44

Goals .. 44

Scenarios.. 44

Azure VMs for Windows Containers ... 46

Benefits ... 46

Next steps ... 46

Walkthrough 4: Deploy your Windows Containers-based apps to Azure Container Instances (ACI) . 47

Technical walkthrough availability .. 47

Overview .. 47

Goals .. 47

Scenarios.. 47

Benefits ... 47

Considerations... 48

Next steps ... 48

Walkthrough 5: Deploy your Windows Containers-based apps to Kubernetes in Azure Container

Service ... 48

Technical walkthrough availability .. 48

Overview .. 48

Goals .. 49

Scenarios.. 49

Benefits ... 50

Next steps ... 51

Walkthrough 6: Deploy your Windows Containers-based apps to Azure App Service for Containers

 .. 51

Technical walkthrough availability .. 51

Overview .. 51

Goals .. 51

Scenario ... 52

Benefits ... 52

iv Contents

Next steps ... 52

Conclusions .. 53

1 CHAPTER 1 | Lift and shift existing .NET apps to Azure IaaS (Cloud Infrastructure-Ready)

CHAPTER 1

Lift and shift existing .NET

apps to Azure IaaS (Cloud

Infrastructure-Ready)

Vision: As a first step, to reduce your on-premises investment and total cost of hardware and

networking maintenance, simply rehost your existing applications in the cloud.

Before getting into how to migrate your existing applications to the Azure infrastructure as a service

(IaaS) platform, it’s important to analyze the reasons why you’d want to migrate directly to IaaS in

Azure. The scenario at this modernization maturity level essentially is to start using VMs in the cloud,

instead of continuing to use your current, on-premises infrastructure.

Another point to analyze is why you might want to migrate to pure IaaS cloud instead of just adding

more advanced managed services in Azure. Determine what cases might require IaaS in the first place.

Figure 2-1 positions Cloud Infrastructure-Ready applications in the modernization maturity levels:

Figure 2-1. Positioning Cloud Infrastructure-Ready applications

2 CHAPTER 1 | Lift and shift existing .NET apps to Azure IaaS (Cloud Infrastructure-Ready)

Why migrate existing .NET web applications to

Azure IaaS
The main reason to migrate to the cloud, even at an initial IaaS level, is to achieve cost reductions. By

using more managed infrastructure services, your organization can lower its investment in hardware

maintenance, server or VM provisioning and deployment, and infrastructure management.

After you make the decision to move your apps to the cloud, the main reason why you might choose

IaaS instead of more advanced options like PaaS is simply that the IaaS environment will be more

familiar. Moving to an environment that’s similar to your current, on-premises environment offers a

lower learning curve, which makes it the quickest path to the cloud.

However, taking the quickest path to the cloud doesn’t mean that you will gain the most benefit from

having your applications running in the cloud. Any organization will gain the most significant benefits

from a cloud migration at the already introduced Cloud-Optimized and Cloud-Native maturity levels.

It also has become evident that applications are easier to modernize and rearchitect in the future

when they are already running in the cloud, even on IaaS. Application data migration has already been

achieved. Also, your organization will have gained the skills required for working in the cloud and

made the shift to operating in a “cloud culture.”

When to migrate to IaaS instead of to PaaS
The next sections discuss Cloud-Optimized applications that are mostly based on PaaS platforms and

services. These apps give you the most benefits from migrating to the cloud.

If your goal is simply to move existing applications to the cloud, first, identify existing applications that

would not require substantial modification to run in Azure App Service. These apps should be the first

candidates for Cloud-Optimized.

Then, for the apps that still cannot move to Windows Containers and PaaS such as App Service or

orchestrators like Azure Kubernetes Service, migrate those apps to simple plain VMs (IaaS).

But, keep in mind that correctly configuring, securing, and maintaining VMs requires much more time

and IT expertise compared to using PaaS services in Azure. If you are considering Azure Virtual

Machines, make sure that you take into account the ongoing maintenance effort required to patch,

update, and manage your VM environment. Azure Virtual Machines is IaaS.

Use Azure Migrate to analyze and migrate your

existing applications to Azure
Migrating to the cloud doesn’t have to be difficult. But many organizations struggle to get started - to

get deep visibility into the environment and the tight interdependencies between applications,

workloads, and data. Without that visibility, it can be difficult to plan the path forward. Without

detailed information on what’s required for a successful migration, you can’t have the right

3 CHAPTER 1 | Lift and shift existing .NET apps to Azure IaaS (Cloud Infrastructure-Ready)

conversations within your organization. You don’t know enough about the potential cost benefits, or

whether workloads could just lift-and-shift or would require significant rework to migrate successfully.

No wonder many organizations hesitate.

Azure Migrate is a new service that provides the guidance, insights, and mechanisms needed to assist

you in migrating to Azure. Azure Migrate provides:

• Discovery and assessment for on-premises virtual machines

• Inbuilt dependency mapping for high-confidence discovery of multi-tier applications

• Intelligent right sizing to Azure virtual machines

• Compatibility reporting with guidelines for remediating potential issues

• Integration with Azure Database Management Service for database discovery and migration

Azure Migrate gives you confidence that your workloads can migrate with minimal impact to the

business and run as expected in Azure. With the right tools and guidance, you can achieve maximum

return on investment while assuring that critical performance and reliability needs are met.

Figure 2-2 shows you the built-in dependency mapping for all server and application connections

performed by Azure Migrate.

Figure 2-2. Positioning Cloud Infrastructure-Ready applications

Use Azure Site Recovery to migrate your existing

VMs to Azure VMs
As part of the end-to-end Azure Migrate, Azure Site Recovery is a tool that you can use to easily

migrate your web apps to VMs in Azure. You can use Site Recovery to replicate on-premises VMs and

physical servers to Azure, or to replicate them to a secondary on-premises location. You can even

replicate a workload that’s running on a supported Azure VM, on an on-premises Hyper-V VM, on a

VMware VM, or on a Windows or Linux physical server. Replication to Azure eliminates the cost and

complexity of maintaining a secondary datacenter.

https://aka.ms/azuremigrate
https://aka.ms/azuremigrate
https://docs.microsoft.com/azure/site-recovery/site-recovery-overview

4 CHAPTER 1 | Lift and shift existing .NET apps to Azure IaaS (Cloud Infrastructure-Ready)

Site Recovery is also made specifically for hybrid environments that are partly on-premises and partly

on Azure. Site Recovery helps ensure business continuity by keeping your apps that are running on

VMs and on-premises physical servers available if a site goes down. It replicates workloads that are

running on VMs and physical servers so that they remain available in a secondary location if the

primary site isn’t available. It recovers workloads to the primary site when it’s up and running again.

Figure 2-3 shows the execution of multiple VM migrations by using Azure Site Recovery.

Figure 2-3. Positioning Cloud Infrastructure-Ready applications

Additional resources

• Azure Migrate Datasheet

 https://aka.ms/azuremigration_datasheet

• Azure Migrate

 https://aka.ms/azuremigrate

• Azure migration and modernization center

 https://azure.microsoft.com/migration/

• Migrate to Azure with Site Recovery

 https://docs.microsoft.com/azure/site-recovery/site-recovery-migrate-to-azure

• Azure Site Recovery service overview

https://aka.ms/azuremigration/_datasheet
https://aka.ms/azuremigrate
https://azure.microsoft.com/migration/
https://docs.microsoft.com/azure/site-recovery/site-recovery-migrate-to-azure

5 CHAPTER 1 | Lift and shift existing .NET apps to Azure IaaS (Cloud Infrastructure-Ready)

 https://docs.microsoft.com/azure/site-recovery/site-recovery-overview

• Migrating VMs in AWS to Azure VMs

 https://docs.microsoft.com/azure/site-recovery/site-recovery-migrate-aws-to-azure

https://docs.microsoft.com/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/azure/site-recovery/site-recovery-migrate-aws-to-azure

6 CHAPTER 2 | Migrate your relational databases to Azure

CHAPTER 2

Migrate your relational

databases to Azure

Vision: Azure offers the most comprehensive database migration.

In Azure, you can migrate your database servers directly to IaaS VMs (pure lift and shift), or you can

migrate to Azure SQL Database, for additional benefits. Azure SQL Database offers the managed

instance and full database-as-a-service (DBaaS) options. Figure 3-1 shows the multiple relational

database migration paths available in Azure.

Figure 3-1. Database migration paths in Azure

7 CHAPTER 2 | Migrate your relational databases to Azure

When to migrate to Azure SQL Database Managed

Instance
In most cases, Azure SQL Database Managed Instance will be your best option to consider when you

migrate your data to Azure. If you are migrating SQL Server databases and need nearly 100%

assurance that you won’t need to rearchitect your application or make changes to your data or data

access code, choose the Managed Instance feature of Azure SQL Database.

Azure SQL Database Managed Instance is the best option if you have additional requirements for SQL

Server instance-level functionality, or isolation requirements beyond the features provided in a

standard Azure SQL Database (single database model). This last one is the most PaaS-oriented choice,

but it doesn’t offer the same features as that of a traditional SQL server. Migration might surface

frictions.

For example, an organization that has made deep investments in instance-level SQL Server capabilities

would benefit from migrating to SQL Managed Instance. Examples of instance-level SQL Server

capabilities include SQL common language runtime (CLR) integration, SQL Server Agent, and cross-

database querying. Support for these features is not available in standard Azure SQL Database (a

single-database model).

An organization that operates in a highly regulated industry, and which needs to maintain isolation for

security purposes, also might benefit from choosing the SQL Managed Instance model.

Managed Instance in Azure SQL Database has the following characteristics:

• Security isolation through Azure Virtual Network

• Application surface compatibility, with these features:

– SQL Server Agent and SQL Server Profiler

– Cross-database references and queries, SQL CLR, replication, change data capture (CDC),

and Service Broker

• Database sizes up to 35 TB

• Minimum-downtime migration, with these features:

– Azure Database Migration Service

– Native backup and restore, and log shipping

With these capabilities, when you migrate existing application databases to Azure SQL Database, the

Managed Instance model offers nearly 100% of the benefits of PaaS for SQL Server. Managed Instance

is a SQL Server environment where you continue using instance-level capabilities without changing

your application design.

Managed Instance is probably the best fit for enterprises that currently are using SQL Server, and

which require flexibility in their network security in the cloud. It’s like having a private virtual network

for your SQL databases.

8 CHAPTER 2 | Migrate your relational databases to Azure

When to migrate to Azure SQL Database
As mentioned, the standard Azure SQL Database is a fully managed, relational DBaaS. SQL Database

currently manages millions of production databases, across 38 datacenters, around the world. It

supports a broad range of applications and workloads, from managing straightforward transactional

data, to driving the most data-intensive, mission-critical applications that require advanced data

processing at a global scale.

Because of its full PaaS features, better pricing-and ultimately lower cost-you should move to the

standard Azure SQL Database as your “by-default choice” if you have an application that uses basic,

standard SQL databases, and no additional instance features. SQL Server features like SQL CLR

integration, SQL Server Agent, and cross-database querying are not supported in the standard Azure

SQL Database. Those features are available only in the Azure SQL Database Managed Instance model.

Azure SQL Database is the only intelligent cloud database service that’s built for app developers. It’s

also the only cloud database service that scales on-the-fly, without downtime, to help you efficiently

deliver multitenant apps. Ultimately, Azure SQL Database leaves you more time to innovate, and it

accelerates your time to market. You can build secure apps and connect to your SQL database by

using the languages and platforms that you prefer.

Azure SQL Database offers the following benefits:

• Built-in intelligence (machine learning) that learns and adapts to your app

• On-demand database provisioning

• A range of offers, for all workloads

• 99.99% availability SLA, zero maintenance

• Geo-replication and restore services for data protection

• Azure SQL Database Point in Time Restore feature

• Compatibility with SQL Server 2016, including hybrid and migration

The standard Azure SQL Database is closer to PaaS than Azure SQL Database Managed Instance.

Prefer the standard Azure SQL Database because you’ll get more benefits from a managed cloud.

However, Azure SQL Database has some key differences from regular and on-premises SQL Server

instances. Depending on your existing application’s database requirements, and your enterprise

requirements and policies, it might not be the best choice when you are planning your migration to

the cloud.

When to move your original RDBMS to a VM (IaaS)
One of your migration options is to move your original relational database management system

(RDBMS), including Oracle, IBM DB2, MySQL, PostgreSQL, or SQL Server, to a similar server that’s

running on an Azure VM. If you have existing applications that require the fastest migration to the

cloud with minimal changes, or no changes at all, a direct migration to IaaS in the cloud might be a

9 CHAPTER 2 | Migrate your relational databases to Azure

fair option. It might not be the best way to take advantage of all the cloud’s benefits, but it’s probably

the fastest initial path.

Currently, Microsoft Azure supports up to 331 different database servers deployed as IaaS VMs. These

include popular RDBMS like SQL Server, Oracle, MySQL, PostgreSQL, and IBM DB2, and many other

NoSQL databases like MongoDB, Cassandra, DataStax, MariaDB, and Cloudera.

Note

Although moving your RDBMS to an Azure VM might be the fastest way to migrate your data to the

cloud (because it is IaaS), this approach requires a significant investment in your IT teams (database

administrators and IT pros). Enterprise teams need to be able to set up and manage high availability,

disaster recovery, and patching for SQL Server. This context also needs a customized environment,

with full administrative rights.

When to migrate to SQL Server as a VM (IaaS)
There might be a few cases where you still need to migrate to SQL Server as a regular VM. An

example scenario is if you need to use SQL Server Reporting Services. In most cases, though, Azure

SQL Database Managed Instance can provide everything you need to migrate from on-premises SQL

servers, so migration to a SQL Server VM should be your last resort to try.

Use Azure Database Migration Service to migrate

your relational databases to Azure
You can use Azure Database Migration Service to migrate relational databases like SQL Server, Oracle,

and MySQL to Azure, whether your target database is Azure SQL Database, Azure SQL Database

Managed Instance, or SQL Server on an Azure VM.

The automated workflow, with assessment reporting, guides you through the changes you need to

make before you migrate the database. When you are ready, the service migrates the source database

to Azure.

Whenever you change an original RDBMS, you might need to retest. You also might need to change

the SQL sentences or Object-Relational Mapping (ORM) code in your application, depending on

testing results.

If you have any other database (for example, IBM DB2) and you opt for a lift and shift approach, you

might want to continue using those databases as IaaS VMs in Azure, unless you are willing to perform

a more complex data migration. A more complex data migration will require additional effort because

you’d be migrating to a different database type with the new schema and different programming

libraries.

To learn how to migrate databases by using Azure Database Migration Service, see Get to the cloud

faster with Azure SQL Database Managed Instance and Azure Database Migration Service.

https://azuremarketplace.microsoft.com/marketplace/apps/category/databases?page=1&subcategories=databases-all
https://channel9.msdn.com/Events/Build/2017/P4008
https://channel9.msdn.com/Events/Build/2017/P4008

10 CHAPTER 2 | Migrate your relational databases to Azure

Additional resources
• Choose a cloud SQL Server option: Azure SQL Database (PaaS) or SQL Server on Azure VM

(IaaS)

 https://docs.microsoft.com/azure/sql-database/sql-database-paas-vs-sql-server-iaas

• Get to the cloud faster with Azure SQL DB Managed Instance and Database Migration

Service

 https://channel9.msdn.com/Events/Build/2017/P4008

• SQL Server database migration to SQL Database in the cloud

 https://docs.microsoft.com/azure/sql-database/sql-database-cloud-migrate

• Azure SQL Database

 https://azure.microsoft.com/services/sql-database/?v=16.50

• SQL Server on virtual machines

 https://azure.microsoft.com/services/virtual-machines/sql-server/

https://docs.microsoft.com/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://channel9.msdn.com/Events/Build/2017/P4008
https://docs.microsoft.com/azure/sql-database/sql-database-cloud-migrate
https://azure.microsoft.com/services/sql-database/?v=16.50
https://azure.microsoft.com/services/virtual-machines/sql-server/

11 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

CHAPTER 3

Modernize existing .NET

apps to Cloud-Optimized

applications

Vision: Modernize your existing .NET Framework applications to Cloud-Optimized applications to

drastically improve your deployment agility, so you can ship faster and lower application’s delivery

costs.

To take advantage of the benefits of the cloud and new technologies like containers, you should at

least partially modernize your existing .NET applications. Ultimately, modernizing your enterprise

applications will lower your total cost of ownership.

Partially modernizing an app doesn’t necessarily mean a full migration and rearchitecture. You can

initially modernize your existing applications with important but easy to do modernization. You can

maintain your current code base, written in existing .NET Framework versions, with any Windows and

IIS dependencies. Figure 4-1 highlights how Cloud-Optimized apps are positioned in Azure

application modernization maturity models.

Figure 4-1. Positioning Cloud-Optimized applications

12 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Reasons to modernize existing .NET apps to Cloud-

Optimized applications
With a Cloud-Optimized application, you can rapidly and repeatedly deliver reliable applications to

your customers. You gain essential agility and reliability by deferring much of the operational

complexity of your app to the platform.

If you can’t get your applications to market quickly, by the time you ship your app, the market you

were targeting will have evolved. You might be too late, no matter how well the application was

architected or engineered. You might be failing or not reaching your full potential because you can’t

sync app delivery with the needs of the market.

The need for continuous business innovation pushes development and operations teams to the limit.

The only way to achieve the agility you need in continuous business innovation is by modernizing

your applications with technologies like containers and specific Cloud-Optimized application

principles.

The bottom line is that when an organization builds and manages applications that are Cloud-

Optimized, it can put solutions in the hands of customers sooner and bring new ideas to market when

they are relevant.

Cloud-Optimized application principles and tenets

Improvements in the cloud are mostly focused on meeting two goals: Reduce costs and improve

business growth by improving agility. These goals are achieved by simplifying processes and reducing

friction when you release and ship applications.

Your application is Cloud-Optimized if you can-in an agile manner-develop your app autonomously

from other on-premises apps, and then release, deploy, autoscale, monitor, and troubleshoot your

app in the cloud.

The key is agility. You can’t ship with agility unless you reduce to an absolute minimum any

deployment-to-production issues and dev/test environment issues. Containers (specifically, Docker, as

a de facto standard) and managed services were designed specifically for this purpose.

To achieve agility, you also need automated DevOps processes that are based on CI/CD pipelines that

release to scalable platforms in the cloud. CI/CD platforms (like Azure DevOps Services or Jenkins) that

deploy to a scalable and resilient cloud platform (like Azure App Service or Azure Kubernetes Service)

are key technologies for achieving agility in the cloud.

The following list describes the main tenets or practices for Cloud-Optimized applications. Note that

you can adopt all or only some of these principles, in a progressive or incremental approach:

• Containers. Containers give you the ability to include application dependencies with the

application itself. Containerization significantly reduces the number of issues you might

encounter when you deploy to production environments or test in staging environments.

Ultimately, containers improve the agility of application delivery.

13 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

• Resilient and scalable cloud. The cloud provides a platform that is managed, elastic, scalable,

and resilient. These characteristics are fundamental to gain cost improvements and ship highly

available and reliable applications in a continuous delivery. Managed services like managed

databases, managed cache as a service (CaaS), and managed storage are fundamental pieces in

alleviating the maintenance costs of your application.

• Monitoring. You can’t have a reliable application without having a good way to detect and

diagnose exceptions and application performance issues. You need to get actionable insights

through application performance management and instant analytics.

• DevOps culture and continuous delivery. Adopting DevOps practices requires a cultural

change in which teams no longer work in independent silos. CI/CD pipelines are possible only

when there is an increased collaboration between development and IT operations teams,

supported by containers and CI/CD tools.

Figure 4-2 shows the main optional pillars of a Cloud-Optimized application. The more pillars you

implement, the readier your application will be to succeed in meeting your customers’ expectations.

Figure 4-2. Main pillars of a Cloud-Optimized application

To summarize, a Cloud-Optimized application is an approach to building and managing applications

that takes advantage of the cloud computing model, while using a combination of containers,

managed cloud infrastructure, resilient application techniques, monitoring, continuous delivery, and

DevOps, all without the need to rearchitect and recode your existing applications.

Your organization can adopt these technologies and approaches gradually. You don’t have to

embrace all of them, all at once. You can adopt them incrementally, depending on enterprise priorities

and user needs.

14 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Benefits of a Cloud-Optimized application

You can get the following benefits by converting an existing application to a Cloud-Optimized

application (without rearchitecting or coding):

• Lower costs, because the managed infrastructure is handled by the cloud provider. Cloud-

Optimized applications get the benefits of the cloud by using the cloud’s out-of-the-box

elasticity, autoscale, and high availability. Benefits are related not only to the compute features

(VMs and containers), but also depend on the resources in the cloud, like DBaaS, CaaS, and any

infrastructure an application might needed.

• Resilient application and infrastructure. When you migrate to the cloud, you need to embrace

transient failures; failures will occur in the cloud. Also, cloud infrastructure and hardware are

“replaceable,” which increases opportunities for transient downtime. At the same time, inner

cloud capabilities and certain application development techniques that implement resiliency and

automate recovery make it much easier to recover from unexpected failures in the cloud.

• Deeper insights into application performance. Cloud monitoring tools like Azure Application

Insights provide visualization for health management, logging, and notifications. Audit logs

make applications easy to debug and audit, fundamental for a reliable cloud application.

• Application portability, with agile deployments. Containers (either Linux or Windows

containers based on Docker Engine) offer the best solution to avoiding a cloud-locked

application. By using containers, Docker hosts, and multi-cloud orchestrators, you can easily

move from one environment or cloud to another. Containers eliminate the friction that typically

occurs in deployments to any environment (stage/test/production).

All of these benefits ultimately provide key cost reductions for your end-to-end application lifecycle.

In the following sections, these benefits are explained in more detail, and are linked to specific

technologies.

Microsoft technologies in cloud-optimized

applications
The following list describes the tools, technologies, and solutions that are recognized as requirements

for Cloud-Optimized apps. You can adopt Cloud-Optimized elements selectively or gradually,

depending on your priorities.

• Cloud infrastructure: The infrastructure that provides the compute platform, operating system,

network, and storage. Microsoft Azure is positioned at this level.

• Runtime: This layer provides the environment for the application to run. If you are using

containers, this layer usually is based on Docker Engine, running either on Linux hosts or on

Windows hosts. (Windows Containers are supported beginning with Windows Server 2016.

Windows Containers is the best choice for existing .NET Framework applications that run on

Windows.)

https://docs.docker.com/engine/
https://docs.microsoft.com/virtualization/windowscontainers/about/

15 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

• Managed cloud: When you choose a managed cloud option, you can avoid the expense and

complexity of managing and supporting the underlying infrastructure, VMs, OS patches, and

networking configuration. If you choose to migrate by using IaaS, you are responsible for all of

these tasks, and for associated costs. In a managed cloud option, you manage only the

applications and services that you develop. The cloud service provider typically manages

everything else. Examples of managed cloud services in Azure include Azure SQL Database,

Azure Redis Cache, Azure Cosmos DB, Azure Storage, Azure Database for MySQL, Azure

Database for PostgreSQL, Azure Active Directory, and managed compute services like VM scale

sets, Azure App Service, and Azure Kubernetes Service.

• Application development: You can choose from many languages when you build applications

that run in containers. This guide focuses on .NET, but, you can develop container-based apps by

using other languages, like Node.js, Python, Spring/Java, or Go.

• Monitoring, telemetry, logging, and auditing: The ability to monitor and audit applications

and containers that are running in the cloud is critical for any Cloud-Optimized application.

Azure Application Insights and Microsoft Operations Management Suite are the main Microsoft

tools that provide monitoring and auditing for Cloud-Optimized apps.

• Provisioning: Automation tools help you provision the infrastructure and deploy an application

to multiple environments (production, testing, staging). You can use tools like Chef and Puppet

to manage an application’s configuration and environment. This layer also can be implemented

by using simpler and more direct approaches. For example, you can deploy directly by using

Azure command-line interface (Azure CLI) tooling, and then use the continuous deployment and

release management pipelines in Azure DevOps Services.

• Application lifecycle: Azure DevOps Services and other tools, like Jenkins, are built automation

servers that help you implement CI/CD pipelines, including release management.

The next sections of this chapter, and the related walkthroughs, focus specifically on details about the

runtime layer (Windows Containers). The guidance describes the ways you can deploy Windows

Containers on Windows Server 2016 (and later versions) VMs and Azure Container Instances. It also

covers more advanced PaaS platforms like Azure App Service and orchestrator like Azure Kubernetes

Service.

Monolithic applications can be Cloud-Optimized

It’s important to highlight that monolithic applications (applications that are not based on

microservices) can be Cloud-Optimized applications. You can build and operate monolithic

applications that take advantage of the cloud computing model by using a combination of containers,

continuous delivery, and DevOps. If an existing monolithic application is right for your business goals,

you can modernize it and make it Cloud-Optimized.

Similarly, if monolithic applications can be Cloud-Optimized applications, other, more complex

architectures like N-Tier applications can also be modernized as Cloud-Optimized applications.

https://azure.microsoft.com/services/sql-database
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/mysql/
https://azure.microsoft.com/services/postgresql/
https://azure.microsoft.com/services/postgresql/
https://azure.microsoft.com/services/active-directory/
https://azure.microsoft.com/services/virtual-machine-scale-sets/
https://azure.microsoft.com/services/virtual-machine-scale-sets/
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/services/container-service/
https://dotnet.microsoft.com/
https://azure.microsoft.com/services/application-insights/
https://www.microsoft.com/cloud-platform/operations-management-suite
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/

16 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

What about Cloud-Native applications?
Although Cloud-Native applications are not the main focus of this guide, it’s helpful to have an

understanding of this modernization maturity level, and to distinguish it from Cloud-Optimized

applications.

Figure 4-3 positions Cloud-Native apps in the application modernization maturity levels:

Figure 4-3. Positioning Cloud-Native applications

The Cloud-Native modernization maturity level usually requires new development investments.

Moving to the Cloud-Native level typically is driven by business need to modernize applications as

much as possible to drastically improve scale in large applications by creating autonomous

subsystems (microservices) that can be deployed and scale independently from other areas of the

application while lowering costs in the long term and increase evolution agility of those autonomous

app’s parts that provide significant compete advantages.

The main pillars of Cloud-Native applications are based on microservices architecture approaches,

which can evolve with agility and scale to limits that would be difficult to achieve in a monolithic

architecture, deployed to either on-premises or cloud environment.

Figure 4-4 shows the main characteristics of the Cloud-Native model.

https://azure.microsoft.com/overview/cloudnative/

17 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Figure 4-4. Cloud-Native characteristics

In addition, you can extend basic modern web apps and cloud-native apps by adding other services,

like artificial intelligence (AI), machine learning (ML), and IoT. You might use any of these services to

extend any of the possible Cloud-Optimized approaches.

The fundamental difference in applications at the Cloud-Native level is in the application architecture.

Cloud-native applications are, by definition, apps that are based on microservices. Cloud-native apps

require special architectures, technologies, and platforms, compared to a monolithic web application

or traditional N-Tier application.

Cloud-native applications details

Cloud-Native is a more advanced or mature state for large and mission-critical applications. Cloud-

Native applications usually require architecture and design that are created from scratch instead of by

modernizing existing applications. The key difference between a Cloud-Native application and a

simpler Cloud-Optimized web app is the recommendation to use microservices architectures in a

cloud-native approach. Cloud-Optimized apps can also be monolithic web apps or N-Tier apps.

The Twelve-Factor App (a collection of patterns that are closely related to microservices approaches)

is also considered a requirement for cloud-native application architectures.

The Cloud Native Computing Foundation (CNCF) is a primary promoter of cloud-native principles.

Microsoft is a member of the CNCF.

For detailed guidance on how to design and develop cloud-native applications, read the following

free e-books:

https://12factor.net/
https://www.cncf.io/
https://azure.microsoft.com/blog/announcing-cncf/

18 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

• Architecting Cloud-Native .NET Applications for Azure

• .NET Microservices: Architecture for containerized .NET applications.

The most important factor to consider if you migrate a full application to the cloud-native model is

that you must rearchitect to a microservices-based architecture. This approach clearly requires a

significant investment in development because of the large refactoring process involved. This option

usually is chosen for mission-critical applications that need new levels of scalability and long-term

agility. But, you could start moving toward cloud-native by adding microservices for just a few new

scenarios, and eventually refactor the application fully as microservices. This step is an incremental

approach that is the best option for some scenarios.

What about microservices?

Understanding microservices and how they work is important when you are considering cloud-native

applications for your organization.

The microservices architecture is an advanced approach that you can use for applications that are

created from scratch or when you evolve existing applications toward cloud-native applications. You

can start by adding a few microservices to existing applications to learn about the new microservices

paradigms. But clearly, you need to architect and code, especially for this type of architectural

approach.

However, microservices are not mandatory for any new or modern application. Microservices are not a

“magic bullet,” and they aren’t the single, best way to create every application. How and when you use

microservices depends on the type of application that you need to build.

The microservices architecture is becoming the preferred approach for distributed and large or

complex mission-critical applications that are based on multiple, independent subsystems in the form

of autonomous services. In a microservices-based architecture, an application is built as a collection of

services that can be independently developed, tested, versioned, deployed, and scaled. This approach

can include any related, autonomous database per microservice.

For a detailed look at a microservices architecture that you can implement by using .NET, see the

downloadable PDF e-book .NET microservices: Architecture for containerized .NET applications. The

guide also is available online.

But even in scenarios in which microservices offer powerful capabilities-independent deployment,

strong subsystem boundaries, and technology diversity-they also raise many new challenges. The

challenges are related to distributed application development, such as fragmented and independent

data models; achieving resilient communication between microservices; the need for eventual

consistency; and operational complexity. Microservices introduce a higher level of complexity

compared to traditional monolithic applications.

Because of the complexity of a microservices architecture, only specific scenarios and certain

application types are suitable for microservice-based applications. These include large and complex

applications that have multiple, evolving subsystems. In these cases, it’s worth investing in a more

complex software architecture, for increased long-term agility and more efficient application

maintenance. But for less complex scenarios, it might be better to continue with a monolithic

application approach or simpler N-Tier approaches.

https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/introduction
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://aka.ms/microservicesebook
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/

19 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

As a final note, even at the risk of being repetitive about this concept, you shouldn’t look at using

microservices in your applications as “all-in or nothing at all.” You can extend and evolve existing

monolithic applications by adding new, small scenarios based on microservices. You don’t need to

start from scratch to start working with a microservices architecture approach. In fact, we recommend

that you evolve from using an existing monolithic or N-Tier application by adding new scenarios.

Eventually, you can break down the application into autonomous components or microservices. You

can start evolving your monolithic applications in a microservices direction, step by step.

In any case, the rest of this present guidance focuses most of all on “no microservices-based apps”

because this guidance is mainly targeting the modernization of existing apps that usually have

monolithic or N-Tier architectures.

Deploy existing .NET apps as Windows containers
Deployments that are based on Windows Containers are applicable to Cloud-Optimized applications

and Cloud-Native applications.

However, in this guide and especially in the following sections, it mostly focuses on using Windows

Containers for Cloud-Optimized applications where you don’t need to rearchitect your application.

What are containers? (Linux or Windows)

Containers are a way to wrap up an application into its own isolated package. In its container, the

application is not affected by applications or processes that exist outside of the container. Everything

the application depends on to run successfully as a process is inside the container. Wherever the

container might move, the requirements of the application will always be met, in terms of direct

dependencies, because it is bundled with everything that it needs to run (library dependencies,

runtimes, and so on).

The main characteristic of a container is that it makes the environment the same across different

deployments because the container itself comes with all the dependencies it needs. You can debug

the application on your machine, and then deploy it to another machine, with the same environment

guaranteed.

A container is an instance of a container image. A container image is a way to package an app or

service (like a snapshot), and then deploy it in a reliable and reproducible way. You could say that

Docker is not only a technology-it’s also a philosophy and a process.

As containers daily become more common, they are becoming an industry-wide “unit of deployment.”

Benefits of containers (Docker Engine on Linux or Windows)

Building applications by using containers-which also might be defined as lightweight building blocks-

offers a significant increase in agility for building, shipping, and running any application, across any

infrastructure.

With containers, you can take any app from development to production with little or no code change,

thanks to Docker integration across Microsoft developer tools, operating systems, and the cloud.

20 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

When you deploy to plain VMs, you probably already have a method in place for deploying ASP.NET

apps to your VMs. It’s likely, though, that your method involves multiple manual steps or complex

automated processes by using a deployment tool like Puppet, or a similar tool. You might need to

perform tasks like modifying configuration items, copying application content between servers, and

running interactive setup programs based on .msi setups, followed by testing. All those steps in the

deployment add time and risk to deployments. You will get failures whenever a dependency is not

present in the target environment.

In Windows Containers, the process of packaging applications is fully automated. Windows Containers

is based on the Docker platform, which offers automatic updates and rollbacks for container

deployments. The main improvement you get from using the Docker engine is that you create images,

which are like snapshots of your application, with all its dependencies. The images are Docker images

(a Windows container image, in this case). The images run ASP.NET apps in containers, without going

back to source code. The container snapshot becomes the unit of deployment.

Many organizations are containerizing existing monolithic applications for the following reasons:

• Release agility through improved deployment. Containers offer a consistent deployment

contract between development and operations. When you use containers, you won’t hear

developers say, “It works on my machine, why not in production?” They can say, “It runs as a

container, so it will run in production.” The packaged application, with all its dependencies, can

be executed in any supported container-based environment. It will run the way it was intended

to run in all deployment targets (dev, QA, staging, production). Containers eliminate most

frictions when they move from one stage to the next, which greatly improves deployment, and

you can ship faster.

• Cost reductions. Containers lead to lower costs, either by the consolidation and removal of

existing hardware, or from running applications at a higher density per unit of hardware.

• Portability. Containers are modular and portable. Docker containers are supported on any

server operating system (Linux and Windows), in any major public cloud (Microsoft Azure,

Amazon AWS, Google, IBM), and in on-premises and private or hybrid cloud environments.

• Control. Containers offer a flexible and secure environment that’s controlled at the container

level. A container can be secured, isolated, and even limited by setting execution constraint

policies on the container. As detailed in the section about Windows Containers, Windows Server

2016 and Hyper-V containers offer additional enterprise support options.

Significant improvements in agility, portability, and control ultimately lead to significant cost

reductions when you use containers to develop and maintain applications.

What is Docker?

Docker is an open-source project that automates the deployment of applications as portable, self-

sufficient containers that can run in the cloud or on-premises. Docker is also a company that

promotes and evolves this technology. The company works in collaboration with cloud, Linux, and

Windows vendors, including Microsoft.

https://www.docker.com/
https://github.com/docker/docker
https://www.docker.com/

21 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Figure 4-6. Docker deploys containers at all layers of the hybrid cloud

To someone familiar with virtual machines, containers might appear to be remarkably similar. A

container runs an operating system, has a file system, and can be accessed over a network, just like a

physical or virtual computer system. However, the technology and concepts behind containers are

vastly different from virtual machines. From a developer point of view, a container must be treated

more like a single process. In fact, a container has a single entry point for one process.

Docker containers (for simplicity, containers) can run natively on Linux and Windows. When running

regular containers, Windows containers can run only on Windows hosts (a host server or a VM), and

Linux containers can run only on Linux hosts. However, in recent versions of Windows Server and

Hyper-V containers, a Linux container can also run natively on Windows Server by using the Hyper-V

isolation technology that currently is available only in Windows Server Containers.

In the near future, mixed environments that have both Linux and Windows containers will be possible

and even common.

Benefits of Windows Containers for your existing .NET applications

The benefits of using Windows Containers are fundamentally the same benefits you get from

containers in general. Using Windows Containers is about greatly improving agility, portability, and

control.

Existing .NET applications refer to those applications that were created using the .NET Framework. For

example, they might be traditional ASP.NET web applications-they don’t use .NET Core or .NET 5.0,

which is newer and runs cross-platform on Linux, Windows, and MacOS.

The main dependency in the .NET Framework is Windows. It also has secondary dependencies, like IIS,

and System.Web in traditional ASP.NET.

A .NET Framework application must run on Windows, period. If you want to containerize existing .NET

Framework applications and you can’t or don’t want to invest in a migration to .NET Core or later(“If it

22 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

works properly, don’t migrate it”), the only choice you have for containers is to use Windows

Containers.

So, one of the main benefits of Windows Containers is that they offer you a way to modernize your

existing .NET Framework applications that are running on Windows-through containerization.

Ultimately, Windows Containers gets you the benefits that you are looking for by using containers-

agility, portability, and better control.

Choose an OS to target with .NET-based containers

Given the diversity of operating systems that are supported by Docker, as well as the differences

between .NET Framework and .NET Core, you should target a specific OS and specific versions based

on the framework you are using.

For Windows, you can use Windows Server Core or Windows Nano Server. These Windows versions

provide different characteristics (like IIS versus a self-hosted web server like Kestrel) that might be

needed by .NET Framework or .NET applications.

For Linux, multiple distros are available and supported in official .NET Docker images (like Debian).

Figure 4-7 shows OS versions that you can target, depending on the app’s version of the .NET

Framework.

Figure 4-7. Operating systems to target based on .NET Framework version

In migration scenarios for existing or legacy applications that are based on .NET Framework

applications, the main dependencies are on Windows and IIS. Your only option is to use Docker

images based on Windows Server Core and the .NET Framework.

When you add the image name to your Dockerfile file, you can select the operating system and

version by using a tag, as in the following examples for .NET Framework-based Windows container

images:

23 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Tag System and version

mcr.microsoft.com/dotnet/framework/runtime:4.x-

windowsservercore-20H2

.NET Framework 4.x on Windows

Server Core

mcr.microsoft.com/dotnet/framework/aspnet:4.x-

windowsservercore-20H2

.NET Framework 4.x with additional

ASP.NET customization, on

Windows Server Core

For .NET (cross-platform for Linux and Windows), the tags would look like the following:

Tag System and version

mcr.microsoft.com/dotnet/runtime:5.0 .NET runtime-only on Linux

mcr.microsoft.com/dotnet/runtime:5.0-nanoserver-

20H2

.NET runtime-only on Windows Nano

Server

Multi-arch images

Beginning in mid-2017, you can also use a new feature in Docker called multi-arch images. .NET

Docker images can use multi-arch tags. Your Dockerfile files no longer need to define the operating

system that you are targeting. The multi-arch feature allows a single tag to be used across multiple

machine configurations. For instance, with multi-arch, you can use one common tag:

mcr.microsoft.com/dotnet/runtime:5.0. If you pull that tag from a Linux container environment,

you get the Debian-based image. If you pull that tag from a Windows container environment, you get

the Nano Server-based image.

For .NET Framework images, because the traditional .NET Framework supports only Windows, you

cannot use the multi-arch feature.

Windows container types

Like Linux containers, Windows Server containers are managed by using Docker Engine. Unlike Linux

containers, Windows containers include two different container types, or run times-Windows Server

containers and Hyper-V isolation.

Windows Server containers: Provides application isolation through process and namespace isolation

technology. A Windows Server container shares a kernel with the container host and all containers

that are running on the host. These containers do not provide a hostile security boundary and should

not be used to isolate untrusted code. Because of the shared kernel space, these containers require

the same kernel version and configuration.

Hyper-V isolation: Expands on the isolation provided by Windows Server Containers by running each

container on a highly optimized VM. In this configuration, the kernel of the container host is not

shared with other containers on the same host. These containers are designed for hostile multitenant

hosting, with the same security assurances of a VM. Because these containers don’t share the kernel

with the host or other containers on the host, they can run kernels with different versions and

configurations (with supported versions). For example, all Windows containers on Windows 10 use

Hyper-V isolation to utilize the Windows Server kernel version and configuration.

https://github.com/moby/moby/issues/15866

24 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Running a container on Windows with or without Hyper-V isolation is a run-time decision. You might

choose to create the container with Hyper-V isolation initially, and at run time, choose to run it as a

Windows Server container instead.

Additional resources

• Windows Containers documentation

 https://docs.microsoft.com/virtualization/windowscontainers/

• Windows Containers fundamentals

 https://docs.microsoft.com/virtualization/windowscontainers/about/

• Infographic: Microsoft and containers

 https://info.microsoft.com/rs/157-GQE-382/images/Container%20infographic%201.4.17.pdf

The container ecosystem in Azure

In previous sections, it’s been explained what the benefits of Docker containers are as well as details

on the specific container images for .NET applications. All that generic information is fundamental in

order to develop or containerize an application. However, when thinking about the production

deployment environment or even QA and Dev/Test environments, Microsoft Azure provides an open

and broad variety of choices, a full container ecosystem in the cloud (shown in the diagram below).

Depending on your specific application’s needs, you should choose one or another Azure product.

https://docs.microsoft.com/virtualization/windowscontainers/
https://docs.microsoft.com/virtualization/windowscontainers/about/
https://info.microsoft.com/rs/157-GQE-382/images/Container%20infographic%201.4.17.pdf

25 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Figure 4-7.5. The container ecosystem in Azure

From the container ecosystem in Azure, the following products supporting containers that are

considered infrastructure:

• Azure Container Instances (ACI)

• Azure Virtual Machines (With container’s support)

• Azure Virtual Machine Scale Sets (With container’s support)

From those three, ACI provides a great benefit, which is the fact that you don’t need to maintain the

underlying OS, no need for you to upgrade/patch, etc. but ACI still is positioned in the infrastructure

level, as better explained in the upcoming sections of this book.

The products in Azure supporting containers that are at the same time positioned more in the PaaS

(Platform as a Service) level are:

• Azure App Service

• Azure Kubernetes Service (AKS and ACS)

• Azure Batch

Then, Azure Container Registry is a high scalable container registry hosted in Azure that you can use

from all the previous products when registering and deploying your custom container images.

In addition, from your containers, you can consume other managed services in Azure like Azure SQL

Database, Azure Redis cache, Azure Cosmos DB, etc. plus there are third-party solutions/platforms

26 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

available in Azure Marketplace like Cloud Foundry and OpenShift where you can also use containers

within Azure.

In the next sections, you can explore Microsoft’s recommendations on when to use each of those

Azure products and solutions specifically when targeting Windows Containers.

When not to deploy to Windows Containers
Some Windows technologies are not supported by Windows Containers. In those cases, you still need

to migrate to the standards VMs, usually with just Windows and IIS.

Cases not supported in Windows Containers, as of May 2018:

• Microsoft Message Queuing (MSMQ) currently is only available in Windows Containers based on

Windows Server v1803 release, but not in any other prior releases.

– Discussion forum

• Microsoft Distributed Transaction Coordinator (MSDTC) currently is not supported in Windows

Containers.

– GitHub issue

• Microsoft Office currently does not support containers.

• UI apps (client apps with a visual user interface) are not supported scenarios.

• Windows infrastructure roles (DNS, DHCP, DC, NTP, PRINT, File server, IAM etc.) are not

supported scenarios.

Additional resources

• Virtual machines and containers in Azure

 https://azure.microsoft.com/overview/containers/

When to deploy Windows Containers in your on-

premises IaaS VM infrastructure
• Your organization might not be ready to move to the cloud, or it might not be able to move to

the cloud for a business reason. But, you can still get the benefits of using Windows Containers

in your own datacenters.

• You might have other artifacts that are being used on-premises, and which might slow you

down when you try to move to the cloud. For example, security or authentication dependencies

with on-premises Windows Server Active Directory, or any other on-premises asset.

https://social.msdn.microsoft.com/Forums/bce99a7d-aa60-44fa-a348-450855650810/msmqserver-is-it-supported?forum=windowscontainers
https://github.com/MicrosoftDocs/Virtualization-Documentation/issues/494
https://azure.microsoft.com/overview/containers/

27 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

• If you start using Windows Containers today, you can make a phased migration to the cloud

tomorrow from a much better position. Windows Containers is becoming a unit of deployment

for any cloud, with no lock-in.

When to deploy Windows Containers to Azure VMs

(IaaS cloud)
If your organization is using Azure VMs, even if you are also using Windows Containers, you are still

dealing with IaaS. That means that dealing with infrastructure operations, VM OS patches, and

infrastructure complexity for highly scalable applications when you need to deploy to multiple VMs in

a load-balanced infrastructure. The main scenarios for using Windows Containers in an Azure VM are:

• Dev/test environment: A VM in the cloud is perfect for development and testing in the cloud.

You can rapidly create or stop the environment depending on your needs.

• Small and medium scalability needs: In scenarios where you might need just a couple of VMs

for your production environment, managing a few VMs might be affordable until you can move

to more advanced PaaS environments, like orchestrators.

• Production environment with existing deployment tools: You might be moving from an on-

premises environment in which you have invested in tools to make complex deployments to

VMs or bare-metal servers (like Puppet or similar tools). To move to the cloud with minimal

changes to production environment deployment procedures, you might continue to use those

tools to deploy to Azure VMs. However, you’ll want to use Windows Containers as the unit of

deployment to improve the deployment experience.

When to deploy Windows Containers to Azure

Container Instances (ACI)
The main value proposition of Azure Container Instances is that you can right away deploy containers

to it and you don’t need to maintain that environment, you don’t need to upgrade/patch the

underlying operating system or VMs, all that is transparent and you just deploy containers into a

ready-to-use environment.

The reasons and scenarios when you would want to use ACI are similar to the main scenarios when

you use Azure VMs with containers, so basically, the main scenarios for using Azure Container

Instances are:

• Dev/Test scenarios

• Task automation

• CI/CD agents

• Small/scale batch processing

• Simple web apps

28 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

The simple web apps scenario is a fair scenario for ACI but take into account that since in ACI you can

only have a single container instance per container image, you won’t have high availability and only

have limited scalability.

However, even when ACI is considered infrastructure because it just provides single container

instances, there is a huge benefit compared to regular Azure VMs with Windows Server. With ACI, you

just deploy the containers into a self-maintained environment and you just pay for those containers.

You don’t need to maintain/update/patch VMs, so it is a much better platform for most scenarios

where you might be using VMs with containers. Using ACI is straight forward, you just deploy a

container, there’s no need to create a VM environment you just deploy containers.

The main benefits of Azure Container Instances (ACI) are:

• Run containers without managing servers

• Increase agility with containers on demand

• Deploy containers to the cloud with unprecedented simplicity and speed—with a single

command.

• Secure applications with hypervisor isolation

In short, with ACI you can develop apps fast without managing virtual machines or having to learn

new tools. It’s just your application, in a container, running in the cloud.

When to deploy Windows Containers to Azure

Container Service (that is, Kubernetes)
Azure Container Service optimizes the configuration of popular open-source tools and technologies

specifically for Azure. You get an open solution that offers portability both for your containers and for

your application configuration. You select the size, the number of hosts, and the orchestrator tools.

Azure Container Service handles the infrastructure for you.

If you are already working with open-source orchestrators like Kubernetes, Docker Swarm, or DC/OS,

you don’t need to change your existing management practices to move container workloads to the

cloud. Use the application management tools that you’re already familiar with and connect via the

standard API endpoints for the orchestrator of your choice.

All these orchestrators are mature environments if you are using Linux Docker containers, but might

only be in Preview state for Windows Containers.

For example, in Kubernetes, support for containers is native (first-class citizen), so using Windows

Containers on Kubernetes is also effective (in preview in ACS as of early 2018).

Important note: The evolved and “more PaaS” version of ACS (Azure Container Service) for Kubernetes

is AKS (Azure Kubernetes Service), however, Windows Containers are still not supported as of Q2

2018, but it will be supported soon.

29 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Choosing Azure compute platforms for container-

based applications
As you have noticed after reading the previous sections, Azure is an open cloud that offers multiple

choices. You can use the best fit for your needs, however, it also surfaces questions about what

product/technology you should use for your containerized applications.

As a by-default recommendation, the following is the main criteria recommended in this guidance:

• Single monolithic app: Choose Azure App Service

• N-Tier app: Choose orchestrators such as Azure Kubernetes Service (AKS) or App Service if you

have a single or a few back-end services

• Microservices: Choose AKS or Azure Web Apps for Containers

• Serverless functions & event handlers: Choose Azure Functions

• Large-scale Batch: Choose Azure Batch

However, this recommendation should be taken with a pinch of salt, as the product’s selection will

depend on your specific application’s needs and characteristics. Not all applications are the same even

when initially they might look similar types.

After a deeper analysis of the application’s needs, the product selected could be different. But, as a

starting point, it is good to have initial guidance from where you can start evaluating and testing

based on certain priority.

Additional resources

• Choose an Azure compute service for your application

 https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree

Build resilient services ready for the cloud: Embrace

transient failures in the cloud
Resiliency is the ability to recover from failures and continue to function. Resiliency is not about

avoiding failures, but accepting the fact that failures will occur, and then responding to them in a way

that avoids downtime or data loss. The goal of resiliency is to return the application to a fully

functioning state after a failure.

Your application is ready for the cloud when, at a minimum, it implements a software-based model of

resiliency, rather than a hardware-based model. Your cloud application must embrace the partial

failures that will certainly occur. Design or partially refactor your application to achieve resiliency with

expected partial failures. It should be designed to cope with partial failures, like transient network

outages and nodes, or VMs crashing in the cloud. Even containers being moved to a different node

within an orchestrator cluster can cause intermittent short failures within the application.

https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree

30 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Handling partial failure

In a cloud-based application, there’s an ever-present risk of partial failure. For instance, a single

website instance or a container might fail, or it might be unavailable or unresponsive for a short time.

Or, a single VM or server might crash.

Because clients and services are separate processes, a service might not be able to respond in a timely

manner to a client’s request. The service might be overloaded and respond slowly to requests, or it

might not be accessible for a short time because of network issues.

For example, consider a monolithic .NET application that accesses a database in Azure SQL Database.

If the Azure SQL database or any other third-party service is unresponsive for a brief time (an Azure

SQL database might be moved to a different node or server, and be unresponsive for a few seconds),

when the user tries to do any action, the application might crash and show an exception at the same

moment.

A similar scenario might occur in an app that consumes HTTP services. The network or the service

itself might not be available in the cloud during a short, transient failure.

A resilient application like the one shown in Figure 4-9 should implement techniques like “retries with

exponential backoff” to give the application an opportunity to handle transient failures in resources.

You also should use “circuit breakers” in your applications. A circuit breaker stops an application from

trying to access a resource when it’s actually a long-term failure. By using a circuit breaker, the

application avoids provoking a denial of service to itself.

Figure 4-9. Partial failures handled by retries with exponential backoff

You can use these techniques both in HTTP resources and in database resources. In Figure 4-9, the

application is based on a 3-tier architecture, so you need these techniques at the services level (HTTP)

and at the data tier level (TCP). In a monolithic application that uses only a single app tier in addition

to the database (no additional services or microservices), handling transient failures at the database

connection level might be enough. In that scenario, just a particular configuration of the database

connection is required.

When implementing resilient communications that access the database, depending on the version of

.NET you are using, it can be straightforward (for example, with Entity Framework 6 or later. It’s just a

https://docs.microsoft.com/ef/ef6/fundamentals/connection-resiliency/retry-logic

31 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

matter of configuring the database connection). Or, you might need to use additional libraries like the

Transient Fault Handling Application Block (for earlier versions of .NET), or even implement your own

library.

When implementing HTTP retries and circuit breakers, the recommendation for .NET is to use the

Polly library, which targets .NET Standard 1.1 (coverage: .NET Core 1.0, Mono, Xamarin, UWP, WP8.1+)

and .NET Standard 2.0+ (coverage: .NET Core 2.0+, .NET Core 3.0, and later Mono, Xamarin and UWP

targets). The nuget package also includes direct targets for .NET Framework 4.6.1 and 4.7.2.

To learn how to implement strategies for handling partial failures in the cloud, see the following

references.

Additional resources

• Implementing resilient communication to handle partial failure

 https://docs.microsoft.com/dotnet/architecture/microservices/implement-resilient-

applications/partial-failure-strategies

• Entity Framework connection resiliency and retry logic (version 6 and later)

 https://docs.microsoft.com/ef/ef6/fundamentals/connection-resiliency/retry-logic

• The Transient Fault Handling Application Block

• https://docs.microsoft.com/previous-versions/msp-n-p/hh680934(v=pandp.50)

• Polly library for resilient HTTP communication

 https://github.com/App-vNext/Polly

Modernize your apps with monitoring and telemetry
When you run an application in production, it’s critical that you have insights about how your

application is performing. Is it performing at a high level? Are users getting errors, or is the application

stable and reliable? You need rich performance monitoring, powerful alerting, and dashboards to help

ensure that your application is available and performing as expected. You also need to be able to see

quickly if there’s a problem, determine how many customers are affected, and perform a root-cause

analysis to find and fix the issue.

Monitor your application with Application Insights

Application Insights is an extensible Application Performance Management (APM) service for web

developers who work on multiple platforms. Use it to monitor your live web application. Application

Insights automatically detects performance anomalies. It includes powerful analytics tools to help you

diagnose issues, and to help you understand what users actually do with your app. Application

Insights is designed to help you continuously improve performance and usability. It works for apps on

a wide variety of platforms, including .NET, Node.js, and J2EE, whether hosted on-premises or in the

https://docs.microsoft.com/previous-versions/msp-n-p/hh680934(v=pandp.50)
https://github.com/App-vNext/Polly
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/partial-failure-strategies
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/partial-failure-strategies
https://docs.microsoft.com/ef/ef6/fundamentals/connection-resiliency/retry-logic
https://docs.microsoft.com/previous-versions/msp-n-p/hh680934(v=pandp.50)
https://github.com/App-vNext/Polly

32 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

cloud. Application Insights integrates with your DevOps processes, and has connection points to

various development tools.

Figure 4-10 shows an example of how Application Insights monitors your application and how it

surfaces those insights to a dashboard.

Figure 4-10. Application Insights monitoring dashboard

Monitor your Docker infrastructure with Log Analytics and its

Container Monitoring solution

Azure Log Analytics is part of the Microsoft Azure overall monitoring solution. It’s also a service in

Operations Management Suite (OMS). Log Analytics monitors cloud and on-premises environments

(OMS for on-premises) to help maintain availability and performance. It collects data generated by

resources in your cloud and on-premises environments and from other monitoring tools to provide

analysis across multiple sources.

In relation to Azure infrastructure logs, Log Analytics, as an Azure service, ingests log and metric data

from other Azure services (via Azure Monitor), Azure VMs, Docker containers, and on-premises or

other cloud infrastructures. Log Analytics offers flexible log search and out-of-the box analytics on top

of this data. It provides rich tools that you can use to analyze data across sources, it allows complex

queries across all logs, and it can proactively alert based on specified conditions. You can even collect

custom data in the central Log Analytics repository, where you can query and visualize it. You can also

take advantage of the Log Analytics built-in solutions to immediately gain insights into the security

and functionality of your infrastructure.

https://docs.microsoft.com/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/operations-management-suite/operations-management-suite-overview
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor

33 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

You can access Log Analytics through the OMS portal or the Azure portal, which run in any browser,

and provide you with access to configuration settings and multiple tools to analyze and act on

collected data.

The Container Monitoring solution in Log Analytics helps you view and manage your Docker and

Windows Container hosts in a single location. The solution shows which containers are running, what

container image they’re running, and where containers are running. You can view detailed audit

information, including commands that are being used with containers. You can also troubleshoot

containers by viewing and searching centralized logs, without needing to remotely view Docker or

Windows hosts. You can find containers that might be noisy and consuming excess resources on a

host. Additionally, you can view centralized CPU, memory, storage, and network usage, and

performance information, for containers. On computers running Windows, you can centralize and

compare logs from Windows Server, Hyper-V, and Docker containers. The solution supports the

following container orchestrators:

• Docker Swarm

• DC/OS

• Kubernetes

• Red Hat OpenShift

Figure 4-11 shows the relationships between various container hosts and agents and OMS.

Figure 4-11. Log Analytics Container Monitoring solution

You can use the Log Analytics Container Monitoring solution to:

• See information about all container hosts in a single location.

• Know which containers are running, what image they’re running, and where they’re running.

• See an audit trail for actions on containers.

https://docs.microsoft.com/azure/log-analytics/log-analytics-containers

34 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

• Troubleshoot by viewing and searching centralized logs without remote login to the Docker

hosts.

• Find containers that might be “noisy neighbors,” and be consuming excess resources on a host.

• View centralized CPU, memory, storage, and network usage, and performance information, for

containers.

Additional resources

• Overview of monitoring in Microsoft Azure

https://docs.microsoft.com/azure/azure-monitor/overview

• What is Application Insights?

https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview

• What is Log Analytics?

https://docs.microsoft.com/azure/log-analytics/log-analytics-overview

• Container Monitoring solution in Azure Monitor

https://docs.microsoft.com/azure/azure-monitor/insights/containers

• Overview of Azure Monitor

https://docs.microsoft.com/azure/azure-monitor/overview

• What is Operations Management Suite (OMS)?

https://docs.microsoft.com/azure/operations-management-suite/operations-management-suite-

overview

Modernize your app’s lifecycle with CI/CD pipelines

and DevOps tools in the cloud
Today’s businesses need to innovate at a rapid pace to be competitive in the marketplace. Delivering

high-quality, modern applications requires DevOps tools and processes that are critical to implement

this constant cycle of innovation. With the right DevOps tools, developers can streamline continuous

deployment and get innovative applications into the hands of users more quickly.

Although continuous integration and deployment practices are well established, the introduction of

containers introduces new considerations, particularly when you are working with multi-container

applications.

Azure DevOps Services supports continuous integration and deployment of multi-container

applications to various environments through the official Azure DevOps Services deployment tasks:

• Deploy to an Azure Web App for Containers

• Deploy to Azure Kubernetes Service

https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/azure/azure-monitor/insights/containers
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/operations-management-suite/operations-management-suite-overview
https://docs.microsoft.com/azure/operations-management-suite/operations-management-suite-overview
https://docs.microsoft.com/azure/devops/pipelines/apps/cd/deploy-docker-webapp?tabs=dotnet-core
https://docs.microsoft.com/azure/devops/pipelines/apps/cd/deploy-aks?tabs=dotnet-core

35 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

But you can also deploy to Docker Swarm or DC/OS by using Azure DevOps Services script-based

tasks.

To continue facilitating deployment agility, these tools provide excellent dev-to-test-to-production

deployment experiences for container workloads, with a choice of development and CI/CD solutions.

Figure 4-12 shows a continuous deployment pipeline that deploys to a Kubernetes cluster in Azure

Container Service.

Figure 4-12. Azure DevOps Services continuous deployment pipeline, deploying to a Kubernetes cluster

Migrate to hybrid cloud scenarios
Some organizations and enterprises can’t migrate some of their applications to public clouds like

Microsoft Azure or any other public cloud due to regulations or their own policies. However, it’s likely

that any organization might benefit from having some of their applications in the public cloud and

other applications on-premises. But a mixed environment can lead to excessive complexity in

environments due to different platforms and technologies used in public clouds versus on-premises

environments.

Microsoft provides the best hybrid cloud solution, one in which you can optimize your existing assets

on-premises and in the public cloud, while you ensure consistency in an Azure hybrid cloud. You can

maximize existing skills, and get a flexible, unified approach to building apps that can run in the cloud

or on-premises, thanks to Azure Stack (on-premises) and Azure (public cloud).

When it comes to security, you can centralize management and security across your hybrid cloud. You

can get control over all assets, from your datacenter to the cloud, by providing single sign-on to on-

premises and cloud apps. You accomplish this functionality by extending Active Directory to a hybrid

cloud, and by using identity management.

Finally, you can distribute and analyze data seamlessly, use the same query languages for cloud and

on-premises assets, and apply analytics and deep learning in Azure to enrich your data, regardless of

its source.

https://blog.jcorioland.io/archives/2016/11/29/full-ci-cd-pipeline-to-deploy-multi-containers-application-on-azure-container-service-docker-swarm-using-visual-studio-team-services.html

36 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Azure Stack

Azure Stack is a hybrid cloud platform that lets you deliver Azure services from your organization’s

datacenter. Azure Stack is designed to support new options for your modern applications in key

scenarios, like edge and unconnected environments, or meeting specific security and compliance

requirements.

Figure 4-13 shows an overview of the true hybrid cloud platform that Microsoft offers.

Figure 4-13. Microsoft hybrid cloud platform with Azure Stack and Azure

Azure Stack is offered in two deployment options, to meet your needs:

• Azure Stack integrated systems

• Azure Stack Development Kit

Azure Stack integrated systems

Azure Stack integrated systems are offered through a partnership of Microsoft and hardware partners.

The partnership creates a solution that offers cloud-paced innovation that is balanced with simplicity

in management. Because Azure Stack is offered as an integrated system of hardware and software,

you get the right amount of flexibility and control, while still adopting innovation from the cloud.

Azure Stack integrated systems range in size from 4 to 12 nodes, and are jointly supported by the

hardware partner and Microsoft. Use Azure Stack integrated systems to implement new scenarios for

your production workloads.

37 CHAPTER 3 | Modernize existing .NET apps to Cloud-Optimized applications

Azure Stack Development Kit

Microsoft Azure Stack Development Kit is a single-node deployment of Azure Stack, which you can

use to evaluate and learn about Azure Stack. You can also use Azure Stack Development Kit as a

developer environment, where you can develop using APIs and tooling that are consistent with Azure.

Azure Stack Development Kit is not intended to be used as a production environment.

Additional resources

• Azure hybrid cloud

 https://azure.microsoft.com/overview/hybrid-cloud/

• Azure Stack

 https://azure.microsoft.com/overview/azure-stack/

• Active Directory Service Accounts for Windows Containers

 https://docs.microsoft.com/virtualization/windowscontainers/manage-containers/manage-

serviceaccounts

• Create a container with Active Directory support

 https://docs.microsoft.com/archive/blogs/containerstuff/create-a-container-with-active-

directory-support

• Azure Hybrid Benefit licensing

 https://azure.microsoft.com/pricing/hybrid-benefit/

https://azure.microsoft.com/overview/hybrid-cloud/
https://azure.microsoft.com/overview/azure-stack/
https://docs.microsoft.com/virtualization/windowscontainers/manage-containers/manage-serviceaccounts
https://docs.microsoft.com/virtualization/windowscontainers/manage-containers/manage-serviceaccounts
https://docs.microsoft.com/archive/blogs/containerstuff/create-a-container-with-active-directory-support
https://docs.microsoft.com/archive/blogs/containerstuff/create-a-container-with-active-directory-support
https://azure.microsoft.com/pricing/hybrid-benefit/

38 CHAPTER 4 | Walkthroughs and technical get started overview

CHAPTER 4

Walkthroughs and

technical get started

overview

To limit the size of this e-book, additional technical documentation and the full walkthroughs were

made available in a GitHub repository. The online series of walkthroughs that is described in this

chapter covers the step-by-step setup of the multiple environments that are based on Windows

Containers, and deployment to Azure.

The following sections explain what each walkthrough is about, its objectives and high-level vision,

and provides a diagram of the tasks that are involved. You can get the walkthroughs themselves in the

eShopModernizing apps GitHub repo wiki at https://github.com/dotnet-

architecture/eShopModernizing/wiki.

Technical walkthrough list
The following get-started walkthroughs provide consistent and comprehensive technical guidance for

sample apps that you can lift and shift by using containers, and then move by using multiple

deployment choices in Azure.

Each of the following walkthroughs uses the new sample eShopLegacy and eShopModernizing apps,

which are available on GitHub at https://github.com/dotnet-architecture/eShopModernizing.

• Tour of eShop legacy apps (baseline apps to modernize)

• Containerize your existing ASP.NET web apps (WebForms & MVC) with Windows

Containers

• Containerize your existing WCF services (N-Tier apps) with Windows Containers

• Deploy your Windows Containers-based app to Azure VMs

• Deploy your Windows Containers-based apps to Kubernetes in Azure Container Service

https://github.com/dotnet-architecture/eShopModernizing/wiki
https://github.com/dotnet-architecture/eShopModernizing/wiki
https://github.com/dotnet-architecture/eShopModernizing

39 CHAPTER 4 | Walkthroughs and technical get started overview

Walkthrough 1: Tour of eShop legacy apps

Technical walkthrough availability

The full technical walkthrough is available in the eShopModernizing GitHub repo wiki:

eShopModernizing wiki walkthroughs

Overview

In this walkthrough, you can explore the initial implementation of three sample legacy applications.

The first two sample web apps have a monolithic architecture, and were created by using classic

ASP.NET. One application is based on ASP.NET 4.x MVC; the second application is based on ASP.NET

4.x Web Forms. The third app is a 3-Tier app composed by a client WinForms app and a server-side

Windows Communication Foundation (WCF) service.

All these applications are available at the eShopModernizing GitHub repo.

Goals

The main goal of this walkthrough is simply to get familiar with these apps, and with their code and

configuration. You can configure the apps so that they generate and use mock data, without using the

SQL database, for testing purposes. This optional config is based on dependency injection, in a

decoupled way.

Scenario 1: ASP.NET Web apps

The figure below shows the simple scenario of the original legacy ASP.NET web applications.

https://github.com/dotnet-architecture/eShopModernizing/wiki
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://github.com/dotnet-architecture/eShopModernizing

40 CHAPTER 4 | Walkthroughs and technical get started overview

From a business domain perspective, both apps offer the same catalog management features.

Members of the eShop enterprise team would use the app to view and edit the product catalog.

The next figure shows the initial app screenshots.

Dependencies in ASP.NET 4.x or earlier versions (either for MVC or for Web Forms) means that these

applications won’t run on .NET Core unless the code is fully rewritten by using ASP.NET Core MVC.

Scenario 2: WCF service and WinForms client app (3-Tier app)

The figure below shows the simple scenario of the original 3-Tier legacy application.

41 CHAPTER 4 | Walkthroughs and technical get started overview

Benefits

The benefits of this walkthrough are simple: Just get familiar with the code and initial apps.

Next steps

Explore this content more in-depth on the GitHub wiki:

• Tour on the baseline ASP.NET MVC and Web Forms “legacy” apps

• Tour on the baseline WCF service and WinForms (3-Tier) “legacy” app

Walkthrough 2: Containerize your existing .NET

applications with Windows Containers

Overview

Use Windows Containers to improve deployment of existing .NET applications, like those based on

MVC, Web Forms, or WCF, to production, development, and test environments.

Goals

The goal of this walkthrough is to show you several options for containerizing an existing .NET

Framework application. You can:

• Containerize your application by using Visual Studio 2017 Tools for Docker (Visual Studio 2017

or later versions).

• Containerize your application by manually adding a Dockerfile, and then using the Docker CLI.

• Containerize your application by using the Img2Docker tool (an open-source tool from Docker).

https://github.com/dotnet-architecture/eShopModernizing/wiki/01.-Tour-on-the-ASP.NET-MVC-and-WebForms-apps-implementation-code
https://github.com/dotnet-architecture/eShopModernizing/wiki/21.-Tour-on-the-WCF-service-and-WinForms-apps
https://docs.microsoft.com/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/cli/
https://github.com/docker/communitytools-image2docker-win

42 CHAPTER 4 | Walkthroughs and technical get started overview

This walkthrough focuses on the Visual Studio 2017 Tools for Docker approach, but the other two

approaches are fairly similar in regard to using Dockerfiles.

Scenario 1: Containerized ASP.NET web apps

Figure below shows the scenario for containerized eShop legacy web apps applications.

Scenario 2: Containerized WCF service

Figure below shows the scenario for a 3-Tier app with a containerized WCF service.

43 CHAPTER 4 | Walkthroughs and technical get started overview

Benefits

There are advantages to running your monolithic application in a container. First, you create an image

for the application. From that point on, every deployment runs in the same environment. Every

container uses the same OS version, has the same version of dependencies installed, uses the same

.NET framework version, and is built by using the same process. Basically, you control the

dependencies of your application by using a Docker image. The dependencies travel with the

application when you deploy the containers.

An additional benefit is that developers can run the application in the consistent environment that’s

provided by Windows Containers. Issues that appear only with certain versions can be spotted

immediately, instead of surfacing in a staging or production environment. Differences in development

environments used by members of the development team matter less when applications run in

containers.

Containerized applications also have a flatter scale-out curve. Containerized apps enable you to have

more application and service instances (based on containers) in a VM or physical machine compared

to regular application deployments per machine. This approach translates to higher density and fewer

required resources, especially when you use orchestrators like Kubernetes.

Containerization, in ideal situations, does not require making any changes to the application code

(C#). In most scenarios, you just need the Docker deployment metadata files (Dockerfiles and Docker

Compose files).

Next steps

Explore this content more in-depth on the GitHub wiki:

• How to containerize the .NET Framework web apps with Windows Containers and Docker

• Adding Docker Support to a WCF service

https://github.com/dotnet-architecture/eShopModernizing/wiki/02.-How-to-containerize-the-.NET-Framework-web-apps-with-Windows-Containers-and-Docker
https://github.com/dotnet-architecture/eShopModernizing/wiki/22.-Adding-Docker-Support

44 CHAPTER 4 | Walkthroughs and technical get started overview

Walkthrough 3: Deploy your Windows Containers-

based app to Azure VMs

Technical walkthrough availability

The full technical walkthrough is available in the eShopModernizing GitHub repo wiki:

https://github.com/dotnet-architecture/eShopModernizing/wiki/06.-Deploying-your-Windows-

Containers-based-app-into-Azure-VMs-(Including-CI-CD)

Overview

Deploying to a Docker host on a Windows Server 2016 Virtual Machine (VM) in Azure lets you quickly

set up development/test/staging environments. It also gives you a common place for testers or

business users to validate the app. VMs also can be valid Infrastructure as a Service (IaaS) production

environments.

Goals

The goal of this walkthrough is to show you the multiple alternatives you have when you deploy

Windows Containers to Azure VMs that are based on Windows Server 2016 or later versions.

Scenarios

Several scenarios are covered in this walkthrough.

https://github.com/dotnet-architecture/eShopModernizing/wiki/06.-Deploying-your-Windows-Containers-based-app-into-Azure-VMs-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/06.-Deploying-your-Windows-Containers-based-app-into-Azure-VMs-(Including-CI-CD)

45 CHAPTER 4 | Walkthroughs and technical get started overview

Scenario A: Deploy to an Azure VM from a dev PC through Docker Engine

connection

Figure 5-4. Deploy to an Azure VM from a dev PC through a Docker Engine connection

Scenario B: Deploy to an Azure VM through a Docker Registry

Figure 5-5. Deploy to an Azure VM through a Docker Registry

46 CHAPTER 4 | Walkthroughs and technical get started overview

Scenario C: Deploy to an Azure VM from CI/CD pipelines in Azure DevOps Services

Figure 5-6. Deploy to an Azure VM from CI/CD pipelines in Azure DevOps Services

Azure VMs for Windows Containers

Azure VMs for Windows Containers are VMs based on Windows Server 2016, Windows 10, or later

versions, both with Docker Engine set up. In most cases, Windows Server 2016 is used in the Azure

VMs.

Azure currently provides a VM named Windows Server 2016 with Containers. You can use this VM

to try the new Windows Server Container feature, with either Windows Server Core or Windows Nano

Server. Container OS images are installed, and then the VM is ready to use with Docker.

Benefits

Although Windows Containers can be deployed to on-premises Windows Server 2016 VMs, when you

deploy to Azure, you get an easier way to get started, with ready-to-use Windows Server Container

VMs. You also get a common online location that’s accessible to testers, and automatic scalability

through Azure virtual machine scale sets.

Next steps

Explore this content more in-depth on the GitHub wiki:

https://github.com/dotnet-architecture/eShopModernizing/wiki/06.-Deploying-your-Windows-

Containers-based-app-into-Azure-VMs-(Including-CI-CD)

https://github.com/dotnet-architecture/eShopModernizing/wiki/06.-Deploying-your-Windows-Containers-based-app-into-Azure-VMs-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/06.-Deploying-your-Windows-Containers-based-app-into-Azure-VMs-(Including-CI-CD)

47 CHAPTER 4 | Walkthroughs and technical get started overview

Walkthrough 4: Deploy your Windows Containers-

based apps to Azure Container Instances (ACI)

Technical walkthrough availability

The full technical walkthrough is available in the eShopModernizing GitHub repo wiki:

Deploying the Apps to ACI (Azure Container Instances)

Overview

Azure Container Instances (ACI) is the quickest way to have a Containers dev/test/staging

environment where you can deploy single instances of containers.

Goals

This walkthrough shows you the main scenarios when deploying Windows Containers to Azure

Container Instances (ACI) and how you can deploy eShopModernizing Apps into ACI.

Scenarios

There can be variations about deploying the eShopModernizing apps into ACI such as deploying just

one or all of the apps (MVC app, WebForms app or WCF service). In the following scenario shown

below, you can see the ASP.NET MVC app plus the SQL Server container both of them deployed as

containers into ACI (Azure Container Instances).

Benefits

Azure Container Instances makes it easy to create and manage Docker containers in Azure, without

having to provision virtual machines or adopt a higher-level service. With ACI, you can directly deploy

a Windows container in Azure and expose it to the internet with a fully qualified domain name (FQDN)

https://github.com/dotnet-architecture/eShopModernizing/wiki/05.-Deploying-the-Apps-to-ACI-(Azure-Container-Instances)
https://docs.microsoft.com/azure/container-instances/

48 CHAPTER 4 | Walkthroughs and technical get started overview

in a matter of seconds (Provided that you have the Windows Container image ready in a Docker

registry like Docker Hub or Azure Container Registry).

Considerations

Deploying Windows Containers with either full .NET Framework / ASP.NET or SQL Server into Azure

Container Instances (ACI) is not quite as fast as deploying to a regular Docker Host (like a Windows

Server 2016 with Windows Containers) because the Docker image has to be downloaded (pulled from

the Docker registry) every time and the sizes of the SQL container image (15.1 GB) and the ASP.NET

container image (13.9 GB) are significantly large, however it is much cheaper than maintaining your

own docker host (permanently on-line Windows Server 2016 with Windows Containers VM in Azure)

not to mention a whole orchestrator like Kubernetes in Azure (AKS) which is, on the other hand, a

great choice for production deployments.

As the main conclusion, using Azure Container Instances is a very compelling option for Dev/Test

scenarios and for CI/CD pipelines.

Next steps

Explore this content more in-depth on the GitHub wiki:

https://github.com/dotnet-architecture/eShopModernizing/wiki/05.-Deploying-the-Apps-to-ACI-

(Azure-Container-Instances)

Walkthrough 5: Deploy your Windows Containers-

based apps to Kubernetes in Azure Container

Service

Technical walkthrough availability

The full technical walkthrough is available in the eShopModernizing GitHub repo wiki:

https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-

Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)

Overview

An application that’s based on Windows Containers will quickly need to use platforms, moving even

further away from IaaS VMs. This approach is needed to easily achieve high scalability and better

automated scalability, and for a significant improvement in automated deployments and versioning.

You can achieve these goals by using the orchestrator Kubernetes, available in Azure Container

Services.

https://github.com/dotnet-architecture/eShopModernizing/wiki/05.-Deploying-the-Apps-to-ACI-(Azure-Container-Instances)
https://github.com/dotnet-architecture/eShopModernizing/wiki/05.-Deploying-the-Apps-to-ACI-(Azure-Container-Instances)
https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)
https://kubernetes.io/
https://azure.microsoft.com/services/container-service/
https://azure.microsoft.com/services/container-service/

49 CHAPTER 4 | Walkthroughs and technical get started overview

Goals

The goal of this walkthrough is to learn how to deploy a Windows Container–based application to

Kubernetes (also called K8s) in Azure Container Service. Deploying to Kubernetes from scratch is a

two-step process:

1. Deploy a Kubernetes cluster to Azure Container Service.

2. Deploy the application and related resources to the Kubernetes cluster.

Scenarios

Scenario A: Deploy directly to a Kubernetes cluster from a dev environment

Figure 5-7. Deploy directly to a Kubernetes cluster from a development environment

50 CHAPTER 4 | Walkthroughs and technical get started overview

Scenario B: Deploy to a Kubernetes cluster from CI/CD pipelines in Azure DevOps

Services

Figure 5-8. Deploy to a Kubernetes cluster from CI/CD pipelines in Azure DevOps Services

Benefits

There are many benefits to deploying to a cluster in Kubernetes. The biggest benefit is that you get a

production-ready environment in which you can scale out the application based on the number of

container instances you want to use (inner-scalability in the existing nodes), and based on the number

of nodes or VMs in the cluster (global scalability of the cluster).

Azure Container Service optimizes popular open-source tools and technologies specifically for Azure.

You get an open solution that offers portability, both for your containers and for your application

configuration. You select the size, the number of hosts, and the orchestrator tools-Container Service

handles everything else.

With Kubernetes, developers can progress from thinking about physical and virtual machines, to

planning a container-centric infrastructure that facilitates the following capabilities, among others:

• Applications based on multiple containers

• Replicating container instances and horizontal autoscaling

• Naming and discovering (for example, internal DNS)

• Balancing loads

51 CHAPTER 4 | Walkthroughs and technical get started overview

• Rolling updates

• Distributing secrets

• Application health checks

Next steps

Explore this content more in-depth on the GitHub wiki: https://github.com/dotnet-

architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-

Kubernetes-in-Azure-Container-Service-(Including-CI-CD)

Walkthrough 6: Deploy your Windows Containers-

based apps to Azure App Service for Containers

Technical walkthrough availability

The full technical walkthrough is available in the eShopModernizing GitHub repo wiki:

https://github.com/dotnet-architecture/eShopModernizing/wiki/Deploy-Windows-Container-to-

Azure-App-Service

Overview

A simple containerized application using Windows Containers can easily be deployed to Azure App

Service for Containers. This approach is the recommended approach for most Windows Container-

based applications.

Goals

The goal of this walkthrough is to learn how to deploy a Windows Container–based application to

Azure App Service for Containers from a registry (Docker Hub or Azure Container Registry).

https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/04.-How-to-deploy-your-Windows-Containers-based-apps-into-Kubernetes-in-Azure-Container-Service-(Including-CI-CD)
https://github.com/dotnet-architecture/eShopModernizing/wiki/Deploy-Windows-Container-to-Azure-App-Service
https://github.com/dotnet-architecture/eShopModernizing/wiki/Deploy-Windows-Container-to-Azure-App-Service

52 CHAPTER 4 | Walkthroughs and technical get started overview

Scenario

Benefits

Deploying to Azure App Service for Containers offers the benefits of containers paired with the PaaS

benefits of Azure App Service. The app service can easily be scaled both vertically and horizontally,

and can be configured to autoscale to meet changing demands. Updates can be performed with zero

downtime and the configuration of continuous deployment from a registry is easily configured as well.

Next steps

Explore this content more in-depth on the GitHub wiki: https://github.com/dotnet-

architecture/eShopModernizing/wiki/Deploy-Windows-Container-to-Azure-App-Service

https://github.com/dotnet-architecture/eShopModernizing/wiki/Deploy-Windows-Container-to-Azure-App-Service
https://github.com/dotnet-architecture/eShopModernizing/wiki/Deploy-Windows-Container-to-Azure-App-Service

53 CHAPTER 5 | Conclusions

CHAPTER 5

Conclusions

• Container-based solutions ultimately provide cost savings benefits. Containers are a solution to

deployment problems because they remove the friction caused by an absence of dependencies

in production environments. By removing those issues, it improves Dev/Test, DevOps, and

production operations significantly.

• A Docker container is becoming the standard unit of deployment for any server-based

application or service.

• For production environments, you should use an orchestrator (like Kubernetes) to host scalable

containers–based applications.

• Azure VMs hosting containers are a fast and simple way to create small Dev/Test environments

in the cloud.

• Azure SQL Database Managed Instance is recommended by default when migrating your

relational databases from existing applications to Azure.

• Visual Studio 2017 and Image2Docker are basic tools for you to start modernizing your existing

.NET applications with Windows Containers by accelerating the getting started learning curve.

• When placing containerized applications in production you will always create or adopt a DevOps

culture and DevOps tools for CI/CD pipelines, like Azure DevOps Services or Jenkins.

• Microsoft Azure provides the most comprehensive and complete environment to modernize

your existing .NET Framework applications with Windows Containers, cloud infrastructure and

PaaS services.

